Multivariate semiparametric spatial methods for imaging data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Semiparametric Methods for Longitudinal, Multivariate, and Survival Data

MICHAEL LINDSEY PENNELL: BAYESIAN SEMIPARAMETRIC METHODS FOR LONGITUDINAL, MULTIVARIATE, AND SURVIVAL DATA. (Under the direction of Dr. David Dunson.) In many biomedical studies, the observed data may violate the assumptions of standard parametric methods. In these situations, Bayesian methods are appealing since nonparametric priors, such as the Dirichlet process (DP), can incorporate a priori...

متن کامل

Semiparametric Approximation Methods in Multivariate Model Selection

In this paper we propose a cross-validation selection criterion to determine asymptotically the correct model among the family of all possible partially linear models when the underlying model is a partially linear model. We establish the asymptotic consistency of the criterion. In addition, the criterion is illustrated using two real sets of data. © 2001 Elsevier Science

متن کامل

Semiparametric methods for clustered recurrent event data.

In biomedical studies, the event of interest is often recurrent and within-subject events cannot usually be assumed independent. In addition, individuals within a cluster might not be independent; for example, in multi-center or familial studies, subjects from the same center or family might be correlated. We propose methods of estimating parameters in two semi-parametric proportional rates/mea...

متن کامل

Semiparametric multivariate density estimation for positive data using copulas

In this paper we estimate density functions for positive multivariate data. We propose a semiparametric approach. The estimator combines gamma kernels or local linear kernels, also called boundary kernels, for the estimation of the marginal densities with parametric copulas to model the dependence. This semiparametric approach is robust both to the well-known boundary bias problem and the curse...

متن کامل

Adaptive Methods for Spatial Scan Analysis via Semiparametric Mixture Models

Spatial scan density (SSD) estimation via mixture models is an important problem in the Ž eld of spatial statistical analysis and has wide applications in image analysis. The “borrowed strength” density estimation (BSDE) method via mixturemodels enables one to estimate the local probability density function in a random Ž eld wherein potential similarities between the density functions for the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biostatistics

سال: 2016

ISSN: 1465-4644,1468-4357

DOI: 10.1093/biostatistics/kxw052